Mark Scheme 4771
 June 2005

1.

(i)	Any connected tree.	M1 A1
	12 connections	B1
(ii)	14 connections	B1
(iii)	e.g. He might be able to save cable by using it.	B1
	e.g. To avoid overloading.	
(iv)	Yes.	B1
	A minimum connector is a tree.	
	This gives the min number of arcs (n-1).	
	This gives the minimum no of connections (2(n-1)).	B1

2.

\begin{tabular}{|c|c|}
\hline (i) Janet John \& \\
\hline \& M1
A1
A1 \\
\hline \begin{tabular}{l}
(ii) Yes \\
Janet's route traces west and south walls plus "attachments". \\
John's route traces north and east walls plus "attachments". \\
- or equivalent \\
(Any "islands" are irrelevant.)
\end{tabular} \& M1
A1

B1

\hline (iii) Yes \& B1

\hline | (iv) Yes |
| :--- |
| All avenues covered by forward and backward pass (i.e. by John's original route + Janet's route). | \& B1

\hline
\end{tabular}

3.

4.

5.

6.
(i) Let f be the number of litres of Flowerbase produced

B1

M1 A1
M1 A1
A1

B1 labels + scales
B1 B1 lines
B1 shading

M1 A1

B1
M1
A1
The profit on Flowerbase will be reduced by more than that suffered by Growmuch, since it uses more fibre. The objective gradient will thus increase from $-9 / 20$, making it even less attractive to produce any Flowerbase.
(v) $£ 3000$

Mark Scheme 4771
January 2006
1.

2.
(i)

Step number	List 1	List 2	A	B	List 3
	$2,34,35,56$	$13,22,34,81,90,92$			
1	$34,35,56$	$22,34,81,90,92$	2	13	
3	35,56	$22,34,81,90,92$	34	13	2
4	35,56	$34,81,90,92$	34	22	2,13
4	35,56	$81,90,92$	34	34	$2,13,22$
3	56	$81,90,92$	35	34	$2,13,22,34$
4	56	90,92	35	81	$2,13,22,34,34$
3		90,92	56	81	$2,13,22,34,34,35$
3		90,92	56	81	$2,13,22,34,34,35,56,81,90,92$

(ii) Merges ordered lists to give an ordered list
(iii) 7
(iv) $\quad \operatorname{Max}=x+y-1$
$\operatorname{Min}=\min (x, y)$

M1 sca
A1 to first step 3 inc.
A1 to second step 3
A1 rest

B1

B1

B1
B1
3.

(i)	Ins and outs	M1
	One more out than in at D. Vice-versa at A.	A1
	Start at D and end at A	
(ii)	Existence - A B D C A	
	Uniqueness - Only alternative is A B C ...!!!	B1
	Extra arc - New possibility A D C B ... !!!	M1 A1
(iii)	B D C A B	A1

4.

5.

6.

Mark Scheme 4771 June 2006

2.

	e.g. a tree			$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$
(ii)	13			B1
(iii)	14			B1
	e.g.			$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$

3.

(i)	$\mathrm{M}=1$	
	$\mathrm{f}(\mathrm{M})=-1$	B1
	$\mathrm{L}=1$	B1
	$\mathrm{M}=1.5$	B1
	$\mathrm{f}(\mathrm{M})=0.25$	B1
	$\mathrm{R}=1.5$	
(ii)	Solves equations (Allow "Finds root 2".)	B1
(iii)	A termination condition	B1

4.

M1 sca activity-on-arc
A1 A, B, C
A1 D
A1 E
B1 forward pass
(1.25 at end of B/dummy)

B1 backward pass
(1.25 at start of dummy/D)

B1

M1
A1

M1
A1
(iv) 2 hours (resource smoothing on A / B, but extra time needed for D/E).
(v) P

Q	-
R	-
S	Q, R
T	Q, R
U	R
V	S, T, U
W	U

5.

(i) Let x be the number of hours spent at badminton Let y be the number of hours spent at squash
$3 x+4 y \leq 11$
$1.5 x+1.75 y \leq 5$
(ii)

(iii) $x+2 y$
(iv) $22 / 4>5>10 / 3$, so 5.5 at $(0,11 / 4)$
(v) Squash courts sold in whole hours

1 hour badminton and 2 hours squash per week
(vi) 3 hours of badminton and no squash

B1
B1
B1

B1 axes labelled and
scaled
B1 line
B1 line
B1 shading
B1 intercepts
B1 $(1,2)$

B1
M1 A1
B1
B1
B1 B1
6.

(i)	$\begin{array}{ll} \text { r } 1: 00 \\ \text { r } 2: & 00 \\ \text { r } 3: 00 \\ \text { r } 4: 00 \\ \text { r } 5: 00 \\ \text { ir } 6: ~ & 00 \end{array}$	-09 fa -04 -01 -19 -19 -29	ure, ot	rwise	failur			M1 A1 A1		
(ii)(A)										
	Run	$\begin{aligned} & \text { Run } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Run } \\ & 3 \end{aligned}$	Run	$\begin{aligned} & \text { Run } \\ & 5 \end{aligned}$	$\begin{gathered} \text { Run } \\ 6 \end{gathered}$	Run	$\begin{aligned} & \text { Run } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Run } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { Run } \\ & 10 \end{aligned}$
$\begin{gathered} \text { year } \\ 1 \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	X	\checkmark	\checkmark
year	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
$\begin{gathered} \text { year } \\ 3 \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
year 4	\checkmark	\checkmark	\checkmark	X		\checkmark	\checkmark		X	\checkmark
(B) 0		\checkmark	\checkmark			\checkmark	\checkmark	M1 tick A1 run A1 run A1 run B1 run B1	$\begin{aligned} & \hline \text { s and c } \\ & 1 \\ & \text { s-4 } \\ & 5-7 \\ & 5-10 \end{aligned}$	$\begin{gathered} \sqrt{ } \\ \text { osses } \end{gathered}$
(iii) (A) if for	o failu yrs 1	then	ntinue	fter yea	$3-\mathrm{bu}$	using r		B1 B1		
(B)										
	Run	$\begin{gathered} \text { Run } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 10 \\ \hline \end{gathered}$
$\begin{gathered} \text { year } \\ 1 \\ \hline \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	X	\checkmark	\checkmark
$\begin{aligned} & \text { year } \\ & 2 \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
$\begin{gathered} \text { year } \\ 3 \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
year 4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		X	\checkmark
		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	M1 A1 run A1 run	$\begin{aligned} & s 1-5 \\ & s-10 \end{aligned}$	\checkmark
(C) 0.3 (iv) more repetitions										

D1 June ‘06

6(ii) (A)

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10
Year 1	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{x}	\checkmark	\checkmark	\mathbf{x}	\checkmark	\checkmark
Year 2	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Year 3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Year 4	\checkmark	\checkmark	\checkmark	\mathbf{x}		\checkmark	\checkmark		\mathbf{x}	\checkmark
Year 5	\mathbf{x}	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark
Year 6		\checkmark	\mathbf{x}			\checkmark	\checkmark			\checkmark

6(iii) (B)

		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
Run 10										
Year 1	\checkmark	\checkmark	\checkmark	\checkmark	\boldsymbol{x}	\checkmark	\checkmark	\boldsymbol{x}	\checkmark	\checkmark
Year 2	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Year 3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Year 4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\mathbf{x}	\checkmark
Year 5	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark
Year 6	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark

Mark Scheme 4771 January 2007
1.

(i) \longrightarrow		B1	
(ii) Any two of 1 or 2 or 3 or 5 or 7		B1 B1	
(iii)	-	M1	branching tree
(iv)		M1	branching tree
(v)	A tree	B1	

2.

3.

(i)	e.g.	$0,1 \rightarrow \mathrm{~A}$
		$2,3 \rightarrow \mathrm{~B}$
	$6,7 \rightarrow \mathrm{D}$	$8,9 \rightarrow \mathrm{E}$

(ii) e.g: 3, 4, 4, 4, 1
(iii) In the above simulation mean $=3.2$
(Correct expectation is 2.5 - geometric rand variable)
(iv) More repetitions

M1 A1 proportions OK
B1 efficient
M1
A1
M1 A1

B1
4.

(ii) See above

Critical activities: A; B; D; F; G; I; K Duration $=46$
(iii) E: total float $=1$; independent float $=1$
$\mathrm{H}: 1$ and 0
J: 14 and 13
C: 2 and 2
(iv) Tiler (I) - 2 days - $£ 500$

Electrician (D) - 1 day - $£ 300$
Bricklayer (B) - 1 day - $£ 350$

M1 activity-on-arc
A1 single start and end
A1 dummy 1
A1 dummy 2
A1 rest

M1 A1 forward pass
M1 A1 backward pass
B1 critical activities
B1 duration

B1 total floats
B1 independent floats

B1 tiler
B1 electrician
B1 bricklayer
5.
(i) Let x be the number of m^{2} of lawn.

Let y be the number of m^{2} of flower beds.
$x+y \geq 1000$
$0.80 x+0.40 y \leq 500$, i.e. $2 x+y \leq 1250$
$y \geq 2 x$
$x \geq 200$
Minimise $0.15 x+0.25 y$
(ii) \& (iii)

Lay $250 \mathrm{~m}^{2}$ of lawn and $750 \mathrm{~m}^{2}$ of flower beds.
Annual maintenance $=£ 225$.
(iv) Intersection of $y \geq 2 x$ \& area constraint is at ($333.33,666.67$) so max useful capital is $£ 533.33$. So $£ 33.33$.

B1
B1

B1
B1
B1
B1 B1

B1 axes labelled + scaled

B4 lines
B1 shading

M1
A1

B1 (allow £533.33)
6.
(i) DtoE; BtoD; CtoE; DtoF; AtoB

Mark Scheme 4771 June 2007

1.

2.

(i)	Rucksack 1: 14; 6	M1	6 must be in R1
	Rucksack 2: 11; 9	A1	
	final item will not fit.	B1	
(ii)	Order: 14, 11, 9, 6, 6	B1	ordering
	Rucksack 1: 14; 11	M1	11 in R1
	Rucksack 2: 9; 6; 6	A1	
	Rucksack 1: 14; 9	B1	
	Rucksack 2: 11; 6; 6 e.g. weights.	B1	

3.

5.
(i) \& (ii)

Route: G A F C D Weight: 17
(iii) Route: G B C F E D or G B A E D Weight: 6 Any capacitated route application.
(iv) Compute min(label, arc) and update working value if result is larger than current working value.
Label unlabelled vertex with largest working value.

M1
A1 arcs
A1 arc weights

M1 Dijkstra
A1 labels
A1 order of labelling
A2 working values

B1 B1
B1 B1
B1
B1 B1
B1
6.

1
(i) 6 routes

B1
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{H} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{T} \rightarrow \mathrm{Pi} \rightarrow \mathrm{H} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
(ii) 6 routes
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{H} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{M} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{Pi} \rightarrow \mathrm{H} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$
(iii)

(iv) e.g.
$\mathrm{P} \rightarrow \mathrm{T} \rightarrow \mathrm{I} \rightarrow \mathrm{V} \rightarrow \mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{I} \rightarrow \mathrm{Pa} \rightarrow \mathrm{P} \rightarrow \mathrm{H} \rightarrow \mathrm{R} \rightarrow \mathrm{C} \rightarrow \mathrm{P} \rightarrow \mathrm{R}$

B1
B1
.

B1

B1

M1 ends at R
A2 (-1 each error/omission)

2. y

3.

$$
\begin{aligned}
& y=2008 \\
& c=2008 / 100=20 \\
& n=2008-19 \times(2008 / 19)=2008-19 \times(105)=13 \\
& k=3 / 25=0 \\
& i=20-5-20 / 3+19 \times 13+15=271 \\
& i=1 \\
& i=1-0=1 \\
& j=2008+502+1+2-20+5=2498 \\
& j=6 \\
& p=-5 \\
& m=3 \\
& d=23 \\
& \text { So } 23^{\text {rd }} \text { March }
\end{aligned}
$$

B1
B1
B1
B1
B1
B1
B1
B1
4.
(i) e.g. $0-3 \rightarrow$ brown
$4-7 \rightarrow$ blue
$8-9 \rightarrow$ green
(ii) e.g. $0-1 \rightarrow$ brown
$2-5 \rightarrow$ blue
$6-7 \rightarrow$ green
$8-9 \rightarrow$ reject
(iii) e.g.

Eye colours

Parent 1	brow n	brow n	brow n	blue
Parent 2	brow n	blue	brow n	blue
Offspring	brow n	brow n	brow n	brow n

brow n	gree n	blue	gree n	brow n	brow n
brow n	blue	brow n	gree n	brow n	green
brow n	blue	brow n	gree n	brow n	blue

A1 proportions OK
A1 efficient
M1 some rejected
A2 proportions OK
(-1 each error)
A1 efficient

B1 br/br \rightarrow br (4 times)
B1 $\mathrm{br} / \mathrm{gr} \rightarrow \mathrm{bl}$
B1 $\mathrm{gr} / \mathrm{gr} \rightarrow \mathrm{gr}$
M1 br/bl rule
A1 application
A1 application
B1 bl/bl application
M1 gr/bl rule
A1 application
5.

6.

4771 Decision Mathematics 1

Solutions

1.

2.

(i)				M1
		X	Y	
	5, 14, 153, 6, 24, 2, 14, 15	5, 14, 153	5, 2	
	5, 14, 6, 24,14, 15	5, 14, 24	5	
	14, 6, 14, 15,	14, 15	14, 6	
	14, 14			
(ii)	Answer = 14 Comparisons $=30$			A1
				A1
		X	Y	M1
	5, 14, 153, 6, 24, 2, 14	5, 14, 153	5, 2	
	5, 14, 6, 24,14	5, 14, 24	5	
	14, 6, 14	14	14,6	
	14			
	Answer $=14$Comparisons $=24$			A1
				A1
(iii)	Median			B1
(iv)	Time taken approximately proportional to square of length of list (or twice length takes four times the time, or equivalent).			B1

3.

4.

(i) e.g.			$\begin{aligned} & 00-0 \\ & 10-3 \\ & 40-1 \\ & 80-8 \\ & 90-8 \end{aligned}$	09 39 79 89 99								$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	proportions OK efficient
(ii) e.g.			$\begin{aligned} & 00-15 \rightarrow 1 \\ & 16-47 \rightarrow 2 \\ & 48-55 \rightarrow 3 \\ & 56-79 \rightarrow 4 \\ & 80-87 \rightarrow 5 \\ & 88-95 \rightarrow 6 \\ & 96,97,98,99 \text { reject } \end{aligned}$									$\begin{array}{\|l} \text { M1 } \\ \text { A2 } \\ \text { A1 } \end{array}$	some rejected proportions OK (-1 each error) efficient
(iii) \& (iv)													
Sim. no.			$\begin{aligned} & \text { arrivin } \\ & \text { iterva } \\ & \text { ngers } \end{aligned}$		um	be					Time to 15 passengers (minutes)		
1	3	2	2	1	1	2	2	2	3	1	6	M1	
2	3	1	2	2	1	4	1	2	5	1	6	A2	(-1 each error)
3	5	1	2	2	2	1	3	4	2	2	12		
4	4	6	3	2	4	1	1	2	2	3	4		
5	5	1	4	1	3	2	5	4	2	2	17		
6	4	4	4	2	5	3	1	4	1	4	8		
7	4	,	4	2	3	1	5	4	1	3	16	M1	simulation
8	2	2	2	2	2	4	3	5	1	2	6	A1	time intervals
9	1	1	1	1	1	1	1	1	1	2	5	A1	passengers
10	2	4	3	2	2	6	2	5	2	1	5	A1	time to wait
(v)	0.8 more runs											$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	

5.

(a)(i) Activity D.

Depends on A and B in project 1 , but on A, B and C in project 2.
(ii) Project 1: Duration is 5 for $x<3$, thence $x+2$.

Project 2: Duration is 5 for $x<2$, thence $x+3$
(b) (i) \& (ii)

M1
A1
A1
B1 "5"
B1 B1 beyond 5
M1 activity-on-arc
A1 single start and single end
A2 precedences (-1 each error)

M1 A1 forward pass
M1 A1 backward pass
B1
B1
6.

(i)						
Order of inclusion	1	3	6	4	5	2
	A	B	C	D	E	F
A	-	10	7	-	9	5
B	10			1		(4)
C	7	-	-	-	(3)	-
D		(1)			2	-
E	9		3	-2		-
F	(5)	4				

Arcs: AF, FB, BD, DE, EC
Length: 15
(ii) \& (iii)

Arcs: AF, FB, BD, AC, AE
Length: 26
(iv) Cubic
n applications of Dijkstra, which is quadratic

M1	
A1	select
A1	delete
A1	order

B1
B1

B1 arcs
B1 lengths
M1 Dijkstra
A1 working values
A1 order of labelling
A1 labels

4771 Decision Mathematics 1

1.

2.
(i)

n	i	j	k
5	1	3	3
	2	2	8
	3	1	13
	4	0	16

$\mathrm{k}=16$
(ii) $f(5)=125 / 6-35 / 6+1=90 / 6+1=16$
(Need to see 125 or $20.8 \dot{3}$ for A1)
(iii) cubic complexity

B1
B1
B1
B1
B1
M1 substituting
A1
B1
3.

4.

5.

6.
(i) X_{i} represents the number of tonnes produced in month i
$\mathrm{x}_{2} \leq \mathrm{x}_{3}$
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 12$
(ii) Substitute $\mathrm{x}_{3}=20-\mathrm{x}_{1}-\mathrm{x}_{2}$

$$
\mathrm{x}_{2} \leq \mathrm{x}_{3} \rightarrow x_{1}+2 x_{2} \leq 20
$$

$$
\text { Min } 2000 x_{1}+2200 x_{2}+2500 x_{3} \rightarrow \operatorname{Max} 500 x_{1}+300 x_{2}
$$

(iii)

Production plan: 6 tonnes in month 1
6 tonnes in month 2
8 tonnes in month 3
Cost $=£ 45200$

M1 $\sqrt{ }$ all 3

A1 cao

4771 Decision Mathematics 1

Question 1

Question 2.

(i)	A's c takes 2, leaving 3. You have to take 1. A's c takes one and you lose.	M1
(ii)A's c takes 3 leaving 3. Then as above.	A1	
(iii)	A's c takes 3 leaving 4. You can then take 1, leading to a win.	M1
		A1

Question 3.

Question 4.

Question 5.

Question 6.

4771 Decision Mathematics 1

3	(i)	No repeated arcs. No loops	B1 B1
	(ii)	Two disconnected sets, $\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{F}\}$ and $\{\mathrm{C}, \mathrm{E}, \mathrm{G}, \mathrm{H}\}$	M1 A1
	(iii)		M1 A1 B1
	(iv)	$4 \times 4=16$ or $\binom{8}{2}-12=28-12=16$	B1

\begin{tabular}{|c|c|c|c|c|}
\hline 4 \& (i) \& \begin{tabular}{l}
e.g. \\
Let \(x\) be the number of adult seats sold. Let \(y\) be the number of child seats sold.
\[
\begin{aligned}
\& x+y \leq 120 \\
\& x+y \geq 100 \\
\& x \geq y
\end{aligned}
\]
\end{tabular} \& \[
\begin{array}{|l}
\text { M1 } \\
\text { A1 }
\end{array}
\]
B1
B1
B1 \& \\
\hline \& \& \& B3
B1

B1

M1
A1

M1

M1 \& | lines |
| :--- |
| (scale must be clear) shading (axes must be clear) |
| point + amount |
| point amount |
| point amount |

\hline \& (vi) \& $6000+60 c>10000=>\mathrm{c} \geq 67$ \& \multicolumn{2}{|l|}{M1 A1}

\hline
\end{tabular}

5	$\begin{aligned} & \text { (i) } \\ & \& \\ & \text { (ii) } \end{aligned}$	shortest route: A EC F distance: $\quad 26$ miles	M1 network A1 arcs A1 lengths M1 Dijkstra A1 working values B1 order of labelling B1 labels
	(iii)	CE CD AE CF AD BF AR EF total length of connector $=45$	M1 5arc connector A1 AD not included A1 all OK, inc order B1 B1
	(iv)	A 3 miles (or length $=9$) B 2 miles (or length $=10$)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 6 \& (i) \& \multicolumn{4}{|l|}{\[
\begin{array}{|ll}
\hline \text { e.g. } \& 0,1,2 \rightarrow \text { fall } \\
\& 3,4,5,6,7,8 \rightarrow \text { not fall } \\
\& 9 \rightarrow \text { redraw }
\end{array}
\]} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
M1 ignore at least 1 \\
A1 proportions \\
correct \\
A1 efficient
\end{tabular}} \\
\hline \& (ii) \& \begin{tabular}{l}
appl \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
Thre
\end{tabular} \& \[
\begin{aligned}
\& \text { r n } \\
\& 1 \\
\& 3 \\
\& 8 \\
\& 0 \\
\& 2 \\
\& 7 \\
\& \text { s fall i }
\end{aligned}
\] \& \begin{tabular}{l}
fall? \\
yes \\
no \\
no \\
yes \\
yes \\
no \\
mulation
\end{tabular} \& \& M1
A2

B1 \& -1 each error

\hline \& (iii) \& | appl |
| :--- |
| 2 |
| 3 |
| 6 |
| apple |
| 6 |
| apple |
| 6 |
| apple |
| 6 | \& \[

$$
\begin{aligned}
& \text { rn } \\
& 0 \\
& 1 \\
& 4 \\
& \\
& \text { rn } \\
& 4 \\
& \\
& \text { rn } \\
& 8 \\
& \\
& \text { rn } \\
& 0
\end{aligned}
$$

\] \& | fall? |
| :--- |
| yes |
| yes |
| no |
| fall? |
| no |
| fall? |
| no |
| fall? |
| yes | \& before all have fallen \& M1 \& -1 each error

\hline \& (iv) \& apple
1
2
3
4
5
6
apple
3
4
apple

4 \& rn \& | fall? |
| :--- |
| picked |
| yes |
| no |
| no |
| yes |
| yes |
| fall? |
| picked |
| no |
| fall? |
| picked | \& 3 days before none left \& \& -1 each error

\hline \& (v) \& \multicolumn{4}{|l|}{more simulations} \& \multicolumn{2}{|l|}{B1}

\hline
\end{tabular}

1.

2.

3.

4.
(i) Each small tile has area $100 \mathrm{~cm}^{2}$ so 1000x

Similarly 900y
So $1000 \mathrm{x}+900 \mathrm{y} \geq 400 \times 300=120000$
(ii) $\mathrm{y} \leq 100$
$10 \mathrm{x} \leq 9 \mathrm{y}$
(iii) e.g. minimise $1.5 \mathrm{x}+2 \mathrm{y}$

Integer solution required, so $\mathrm{x}=60, \mathrm{y}=67$, cost $=224$
(iv) wastage or design

M1	areas
A1	tile areas

A1
B1
B1 B1

B1

B3 lines
B1 shading

M1 solving
A1 $x=59-61 \quad y=66-68$
A1 220-228

B2
5.

(i) \quad e.g.	0 to $4 \rightarrow>$ stagger left
	5 to $9 \rightarrow>$ stagger right
	+ accumulation

(ii) probably one of:

(iii) repeat
relative frequency
(iv) e.g. 0 to $2 \rightarrow>$ stagger left

3 to $8->$ stagger right
9 reject and redraw
(v) e.g.

run 1	R	L	R	L	L	R		
run 2	R		L		R	R	L	R
run 3	R	R	L	L	L	L		
run 4	L	L	R	L	R	R		
run 5	R	R	R	$*$				
run 6	L	R	R		R		R	$*$
run 7	R	R	L	R	R	$*$		
run 8	R	R	L	R	R	$*$		
run 9	R		R		R	$*$		
run 10	L	R	R	L	R	R		

Probability estimate $=0.5$
(Theoretical $=0.7^{3}+5 \times 0.7^{4} \times 0.3=0.70315$)

B1
B1
M1 reject some
A1 proportions
A1 efficient

M1
A2 (-1 each wrong row)

B1 falling in
M1 probability
A1
6.

Duration $=24$ months
Critical : A; F; J; G
(iii) Crash F by 1 month and G by 1 month at a cost of $£ 6 \mathrm{~m}$.
(iv) Crash G by 2 months at a cost of $£ 8$ m.

M1 activity-on-arc
A1 D, E, H and K
A1 F
A1 I and J
A1 G
M1 forward pass
A1
M1 backward pass
A1

B1 cao
B1 cao
B1 F by 1 month
B1 G by 1 month
B1 £6m
M1 G only
A1 $£ 8 \mathrm{~m}$
1.
(i)

(ii) 6
(iii) e.g. 4 arcs and (e.g.) $\{A\},\{B, C, D, E\}$
(iv) Reference to parts (i) and (ii), in reverse - or similar

B1
2.

(i) \begin{tabular}{c|c|c|}

\hline | Test |
| :--- |
| number | \& | Sample drawn from |
| :--- |
| flagons numbered | \& | Result |
| :--- |
| ($\mathrm{D}=$ dead, $\mathrm{A}=$ alive $)$ |

\hline 1 \& $1,2,3,4$ \& A

\hline 2 \& 5,6 \& A

\hline 3 \& 7 \& D

\hline 4 \& 8 \& A

\hline
\end{tabular}

(ii) \begin{tabular}{c|c|c|}

\hline | Test |
| :--- |
| number | \& | Sample drawn from |
| :--- |
| flagons numbered | \& | Result |
| :--- |
| (D = dead, $\mathrm{A}=$ alive $)$ |

\hline 1 \& $1,2,3,4$ \& D

\hline 2 \& $5,6,7,8$ \& D

\hline 3 \& 1,2 \& A

\hline 4 \& 3 \& D

\hline 5 \& 4 \& A

\hline 6 \& 5,6 \& A

\hline 7 \& 7 \& D

\hline 8 \& 8 \& A

\hline
\end{tabular}

3.

Shortest distance $=27$

Shortest route ... ABCEF
(ii) Because F was the final vertex labelled
(iii) Because if there were to be a shorter route than BCEF

M1 Dijkstra
A1 working values
B1 order of labelling
B1 labels

B1 from B to F, then A to B followed by it would give a shorter route from A to F . or " B is en route"

M1 Dijkstra A1 working values B1 order of labelling B1 labels	
B1	
$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	cao
B1	

4.

(i)

Task	Description	Duration (mins)	Immediate predecessor(s)
A	Fill kettle and switch on	0.5	-
B	Boil kettle	1.5	A
C	Cut bread and put in toaster	0.5	-
D	Toast bread	2	C
E	Put eggs in pan of water and light gas	1	-
F	Boil eggs	5	E
G	Put tablecloth, cutlery and crockery on table	2.5	-
H	Make tea and put on table	0.5	B; G
I	Collect toast and put on table	0.5	D; G
J	Put eggs in cups and put on table	1	F; G

(ii)\&(iii)

(iv) critical activities: E; F; J
duration: 7 minutes
task: A B C D E F

B1 A, C, E and G
B1 B, D and F
B1 H, I and J

M1 activity-on-arc
A1 A, G, C, E,
B, D, F
A1 H, I, J
M1 A1 forward pass M1 A1 backward pass

B1
B1

B1
no follow through no multiple starts
no multiple ends
\checkmark but no follow of activity-on-node $\sqrt{ }$ ditto
cao
cao
cao blank=0

5.

(i) | e.g. | |
| :--- | :--- |
| | $00-04$ |
| | 6 |
| | $05-29$ |
| | $70-79$ |
| | 8 |
| | $80-99$ |
| | 9 |

(ii) e.g.

00-09 goal
10-99 no goal
(iii) e.g.
$\begin{array}{llllllll}8 & & & & \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { so } 1 & \text { goal }\end{array}$
(iv) e.g.

00-31 5
32-63 6
64-79 7
80-95 8
96-99 reject and redraw
(v) e.g.

6
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0\end{array}$
so 1 goal
(vi) Each scored 10 goals. Nothing to choose between them.
(vii) More repetitions

	rule using 2-digit nos correct proportions efficient	
B1		complete rule required
B1		\checkmark rule (i)
B1		\checkmark need to see which are converted ... their 8 and rule (ii)
B1		\checkmark their 8 and rule (ii) ... ignore previous line
M1	2 or more rejected	allow part (iv) if seen elsewhere
$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	correct proportions efficient	3 or 4 rejected
$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		in part (v) below expect either 00-11 or 88-99 for goal any other rule must be declared to score marks $\sqrt{ }$ rule (iv) \checkmark their 6 ... need to see which are converted \checkmark
$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$		goals scored one, the other or indifferent, depending on goals scored
B1		"greater number of random numbers" $\rightarrow 0$ "more accurate data" $\rightarrow 0$ Also no "or"s! 3-digit RNs $\rightarrow 0$

4771

Mark Scheme

January 2011

6.

(i) Thousands of litres of A in stock $=2$
$b \geq-4$
(ii) $5(a+2)+6(b+4) \geq 61$
$(a+2)+(b+4) \leq 12$ giving $a+b \leq 6$
(iii)

(iv) Increase stock levels of A by 9000 litres.

Reduce stock levels of B by 3000 .
(v) New stock levels are 11000 of A and 1000 of B.
$5 \times 11000+6 \times 1000=61000$
$11000+1000=12000$

B1
B1
M1 A1
M1 A1

B4 lines
B1 shading
cao
watch for fluke
\checkmark their negative gradient stock line \checkmark shape $=\triangle$ or \square

Give the marks for $9000,-3000$, or equivalent ± 200 litres on both
$\sqrt{ }$ (iv) SC correct answer from nowhere OK
Allow comment only for the "fully stocked" B1.
1.

(i)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3 to 4 deleted 1 to 4 deleted 4 to 4 added	-1 for each arc in error
(ii) 14	B1		
(iii) 47	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$		Award method mark if answer correct, or if wrong but with a sum of products shown.
(iv) $(0,0)$ and (1,0$)$	B1		Award only if correct points are specified in some way.
(v) Explanation should recognise that a line is a set of points - not appropriate in this context.	B1		e.g. "Intermediate points have no meaning." e.g. "Can't have one and a half pairs of shoes." (sic)

2.

3.

(i)	e.g. $x=$ number of large houses $y=$ number of standard houses	M1		M1 for variables for large and for standard A1 for "number"
	land: $\quad 200 x+120 y<=120000$ oe cash: $60 x+50 y<=42400$ oe market: $\mathrm{x}<=0.5 \mathrm{y}$ oe	B1 B1 B1		use "isw" for incorrect simplifications -1 once only for any " <"
	$\begin{array}{r} \mathrm{y} \\ 1000 \end{array}$			
			line 1 , allow ft line 2 , allow ft line 3 , allow ft	for instance, if $\mathrm{x}<=2 \mathrm{y}$ in part (i), then allow correct graph of $\mathrm{x}<=0.5 \mathrm{y}$ or ft graph of $\mathrm{x}<=2 \mathrm{y}$ plotting tolerance on axis intersection points - within correct small square
			feasible region	must consider 3 lines ft if region includes y-axis interval from origin upwards allow any clear indication of feasible region ignore any indication(s) of boundary lines included or excluded
	intersection of $y=2 x$ and $6 x+5 y=4240,(265,530)$ 2650		correct point, cao	identification only - coordinates not required here their 4x+3y from (260-280, 520-540)
(iv)	their $60 \mathrm{x}+50 \mathrm{y}<=45000$ or line from their $(0,900)$ to $(750,0)$		ft	can be implied from final M1 working
	Best point is at the intersection of the land constraint and the new cash constraint, and not on $y=2 x$		comparison of two (or more) points	not just ringing points
		A1		their identified best point is not on $\mathrm{y}=2 \mathrm{x}$ or an axis
	(214, 643)	M1	correct point, cao	identification, coordinates not required here
	2785	A1		bedrooms - their 4x+3y from (200-220, 620-660)

5.

(i)	Activity	Immediate predecessors
A	-	
Pl	A	
Demo	-	
Fo	Pl; Demo	
W	Fo	
Pb	Fo	
R	W	
Fl	Pb; W	
E	R; Fl	
WD	W	
Deco	WD; E	

(iii) critical activities: A; Pl; Fo; W; R; E; Deco project duration $=41$ days

act	A	Pl	Dm	Fo	W	Pb	R	Fl	E	WD	Dc
float	0	0	21	0	0	2	0	1	0	4	0

(iv) Fl has both W and Pb as immediate predecessors.

R and WD have only W as immediate predecessor.

M1 Fl correct
A1 rest

M1 at least one correct nontrivial join forward pass

M1 at least one correct nontrivial burst
A1 backward pass

B1 cao
B1 cao

B1 A, Pl, Dm, Fo, W
B1 rest

B1
B1 one of R/WD
excluding start node
cao
cao - most see zeros, dashes or empty spaces won't do
SC1 for a convincing but not specific answer, e.g. "A dummy is needed to cater for both joint and separate precedences".

(vi) | new duration = 42 days |
| :--- |
| critical activities: A; Pl; Fo; W; C; R; E; Deco |

6.

(ii) Advantage: shortest length of track

Disadvantage: tree, no redundancy \equiv fragility (breakdown et al)
Disadvantage: some journeys are not shortest paths
(iii)

Route: P S Ln Nr
Distance: 345 miles
(iv) Distance by min connector $=425$ miles

Question		Answer	Marks	Guidance	
2	(i)	A L R B $f(L)$ $f(R)$ 3 3.382 3.618 4 2.146 1.910 3.382 3.618 3.764 4 1.910 1.875 3.618	B1 B1 B1 B1 B1 B1 [6]	R and L $f(R)$ and $f(L)$ A L and R $f(L)$ and $F(R)$ A	-1 once only for incorrect accuracy, but condone 1.91. Surds OK, but lose the accuracy mark. (Q says 3dp.)
2	(ii)	Saves a function evaluation	B1 [1]		Has to be a comment about function values.
2	(iii)	eg Setting the control on a gas fire to achieve a room temperature of 20C. Function could be (temp-20) ${ }^{2}$. (This example shows that optimising can be used to "achieve".) Note that the domain cannot be time based ... i.e finding when something occurred. One cannot go back in time to take a reading!	B1 [1]	Optimisation with need to sample at discrete intervals.	"Deepest point in seabed" example seen. This is acceptable, assuming that depth soundings are taken at points, and ignoring the fact that the domain is two dimensional rather than one dimensional.

3	(i)	"is a subset of" Z "shares at least one element with" Z	M1 A1 M1 A1 [4]	directed graph on 3 vertices all correct undirected on 3 vertices all correct	Arcs must either have an arrow at each end. or no arrows.
3	(ii)		M1 A1 B1 B1 [4]	R subset of Q no other subsets $\mathrm{P} \cap \mathrm{Q}$ $P \cap Q^{\prime}$	Allow area split in two, with third area. eg If P and R shown intersecting then can score M1 A1 B0 B0.

Question

Question		Answer	Marks	Guidance	
4	(iii)	Profit $=100 \mathrm{X}+70 \mathrm{Y}$$(5,12.5)$ or $(5,12)$$(8,10)$ 1375 or 1340 $(11,5)$ 1500 1450 $£ 1500$ profit.	B1 M1 A1 [3]	optimisation 1500 seen cao SC B1 for 1500 without the preceding M mark	either profit line or evaluating and comparing at their 3 appropriate points (OK if on graph)
4	(iv)	Solution in range $(10 \pm 1 / 4,62 / 3 \pm 1 / 4)=(9.75-10,25,6.41 \dot{6}-6.916)$ Identification of one of $(9,7),(10,6)$ and $(11,5)$. $\begin{array}{lccl}\text { Evaluation at all three of } & (9,7) & (10,6) & (11,5) \\ & \mathbf{1 3 9 0} & \mathbf{1 4 2 0} & \mathbf{1 4 5 0}\end{array}$ So 11 of X and 5 of Y	B1 B1 M1 A1 [4]	cao cao cao	looking for $(10,62 / 3)$

Question		Answer	Marks	Guidance	
$\mathbf{5}$	(iv)		4 simulations, each ending with 6 bags all scenarios correct	M1	Condone one slip. Condone simulating at (4,0) if correctly done. 6 bags can be implied by probs of thirds or sixths.
			[2]		
$\mathbf{5}$	(v)		Either averaging correct probabilities or sum of singles/30	M1 A1	Correct computation, but allow 1 slip or omission. Correct answer for their simulations.

RECOGNISING ACHIEVEMENT

GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4771: Decision Mathematics 1

Mark Scheme for January 2013

Question		Answer			Marks	Guidance
1 (i)			6 51 5651	Route ... ABDCF Time ... 51 minutes	M1 A1 B1 B1 B1 [5]	Dijkstra (if working values correct at D) working values order of labelling labels route and time
(ii)				Time ... 52 minutes	B1 B1 B1 [3]	methodology indicated correct min connector cao

Question			Answer		Marks

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | (ii) | Objective $=7 x+10 y$
 Best non-integer point
 Solution $\ldots(12,19) ~ 274, ~(13, ~ 18) ~ 271 ~ o r ~(14, ~ 17) ~ 268 ~$
 So 12 hats and 19 scarves | B1
 M1 | objective
 considering profits at their
 three points as indicated
 cao
 cao |
| $\mathbf{6}$ | (iii) | 10 hats and 20 scarves
 $£ 34$ | A1
 $[4]$ | |

Question		Answer	Marks	Guidance
5	(ii)	$\text { Objective }=40 x+50 y$ 29000 at $(100,500)$ 27500 at $(250,350)$ Solution ... 100 snowboards and 500 pairs of skis	B1 M1 A1 [3]	objective considering profits at the two indicated points of their pentagon (or using a profit line) cao www
5	(iii)	$€ 10$ or more	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	cao (allow €51 etc)
5	(iv)	35 snowboards	M1 A1 [2]	moving to appropriate new feasible point on their negatively inclined line cao... integer! (allowing 30 to 40 for graphical inaccuracy)

